Exercise 94

Cobalt-60 has a half-life of 5.24 years.
(a) Find the mass that remains from a $100-\mathrm{mg}$ sample after 20 years.
(b) How long would it take for the mass to decay to 1 mg ?

Solution

Start with the assumption that the rate of mass decay is proportional to the mass.

$$
\frac{d m}{d t} \propto-m
$$

Change this proportionality to an equation by introducing a constant.

$$
\frac{d m}{d t}=-k m
$$

Divide both sides by m.

$$
\frac{1}{m} \frac{d m}{d t}=-k
$$

Rewrite the left side as a derivative of a logarithm by using the chain rule.

$$
\frac{d}{d t} \ln m=-k
$$

The function you take a derivative of to get $-k$ is $-k t+C$, where C is any constant.

$$
\ln m=-k t+C
$$

Exponentiate both sides to solve for m.

$$
\begin{aligned}
& e^{\ln m}=e^{-k t+C} \\
& m(t)=e^{C} e^{-k t}
\end{aligned}
$$

Use a new constant m_{0} for e^{C}.

$$
m(t)=m_{0} e^{-k t}
$$

Use the fact that the half-life of cobalt-60 is 5.24 years to determine k.

$$
\begin{aligned}
m(5.24) & =m_{0} e^{-k(5.24)} \\
\frac{m_{0}}{2} & =m_{0} e^{-5.24 k} \\
\frac{1}{2} & =e^{-5.24 k} \\
\ln \frac{1}{2} & =\ln e^{-5.24 k} \\
-\ln 2 & =(-5.24 k) \ln e \\
k=\frac{\ln 2}{5.24} & \approx 0.13228 \text { year }^{-1}
\end{aligned}
$$

As a result,

$$
\begin{aligned}
m(t) & =m_{0} e^{-\left(\frac{\ln 24}{5.24}\right) t} \\
& =m_{0} e^{\ln 2^{-t / 5.24}} \\
& =m_{0}(2)^{-t / 5 \cdot 24} .
\end{aligned}
$$

Part (a)

After 20 years, the mass of a $100-\mathrm{mg}$ sample will be

$$
m(20)=100(2)^{-20 / 5.24} \approx 7.09628 \mathrm{mg} .
$$

Part (b)

To find when the mass will be 1 mg , set $m(t)=1$ and solve the equation for t.

$$
\begin{gathered}
m(t)=1 \\
100(2)^{-t / 5.24}=1 \\
2^{-t / 5.24}=\frac{1}{100} \\
\ln 2^{-t / 5.24}=\ln \frac{1}{100} \\
\left(-\frac{t}{5.24}\right) \ln 2=-\ln 100 \\
t=\frac{5.24 \ln 100}{\ln 2} \approx 34.8138 \text { years }
\end{gathered}
$$

